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School of Engineering, Data Science
FHNW University of Applied Sciences

and Arts Northwestern Switzerland
Windisch, Switzerland

patrick.schuermann@students.fhnw.ch

Abstract—Alzheimer’s disease is a disease that generally affects
the elderly population and for which no cure exists. It forms a
subtype of dementia. A large number of studies on prevention,
prediction, and recovery have been conducted worldwide in
recent decades, but there are still no established drugs and the
cause of the disease remains unclear. In this study, we investigate
whether changes over different time periods in gut bacteria,
cerebrospinal fluid (CSF) biomarkers, sleep behavior, and MRI
scans can be used to predict degeneration to diagnose AD in
patients with mild cognitive impairment. To do this, we use
KNN, logistic regression, multilayer perceptron, and 3D-CNN
models. The data basis is the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). Further, we investigate whether combining the
three factors gut bacteria, CSF, and sleep behavior can lead to
a more accurate result. Finally, we extend the data used for
prediction to include MRI scans of the brain. We found that
when the individual factors are used separately, only the change
in sleep behavior provides meaningful results. This was across
the entire study period of the patients and with a precision of
82%. Based on the changes from one doctor visit to the next,
no reliable predictions could be made with any of the data sets.
With the combined data set, a precision of 65% could be achieved.
Again, this result only applies over the entire observation period
of individual patients. With the addition of MRI scans to the
combined data set, our multi-modal model achieved a precision
of 72%. The results are discussed regarding limitations and
implications for AD diagnostics.

Index Terms—Alzheimer’s disease, biomarkers, sleep, CSF,
gut bacteria, magnetic resonance imaging, ADNI, classification,
diagnosis, machine learning, deep learning

I. INTRODUCTION

With this paper, we hope to create new insights and con-
tributions to the community investigating AD and finding
methods to fight it. We investigate the correlation between
Alzheimer’s disease (AD) and several factors including gut
bacteria, sleep behavior, and blood values.

A. Alzheimer’s Research on Microbiota, Sleep, and CSF

Alzheimer’s disease is a disease that affects mostly the
elderly population and is defined as a subgroup of dementia.
Currently, 150,000 people in Switzerland live with dementia

Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu).
As such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of ADNI investigators
can be found at: http://adni.loni.usc.edu/wp-content/uploads/how to apply/
ADNI Acknowledgement List.pdf

and about 60% of them suffer from Alzheimer’s disease (AD)
[1]. In 2017 16.5% of all deaths in Switzerland were caused by
dementia [2]. Currently, there is no medication to prevent or
cure Alzheimer’s Disease. While science has found early indi-
cations, the cause of AD remains unknown. Available evidence
suggests that gut microbiota is linked to brain connectivity and
cognitive performance and that modulation of gut microbiota
could be a promising strategy for enhancing cognition and
emotional well-being in stressed and non-stressed situations
[3], [4]. Over the past 10 years, the gut-brain-axis (GBA) and
its relationship to health and disease of the brain have received
considerable attention [5]. Current research suggests p-tau181,
t-tau, and β-Amyloid are a predictor of Alzheimer’s disease
and neurodegeneration [6], [7]. The FDA recently approved a
new treatment for patients with mild cognitive impairment that
showed good results in reducing amyloid beta plaque [8]. Ju
et al. [9] mention that disturbances in sleep hygiene impair the
quality of life in Alzheimer’s disease and suggest investigating
whether improvement of the quality of sleep can reduce the
risk of AD. On the other hand, Mecca et al. [10] contradict
these findings and claim that a disturbance in sleep is not
associated with a decline in memory.

B. Motivation and Research Questions

We aim to determine if gut bacteria, sleep behavior, and
blood values can be used to predict changes in brain health.
Our research questions include:

1) Can gut bacteria be used as a predictor for AD status
and transition from mild cognitive impairment (MCI) to
AD?

2) Can β-Amyloid-42, t-tau, and p-tau181 measured in
cerebrospinal fluid (CSF) be used as early predictors of
AD?

3) Can changes in sleep behavior be used to predict changes
from MCI to AD?

4) Can a combination of these three factors be used to
predict the transition from MCI to AD?

Our motivation for investigating the relationship between
gut bacteria and AD is based on the observed link between
gut bacteria and brain function [5]. Similarly, our interest in
using CSF values as early predictors of AD stems from recent
research [11]. Our investigation into the potential role of sleep
in predicting AD is motivated by the importance of sleep for
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brain health and the potential influence of aging on sleep pat-
terns [12]. Our aim to combine these three factors in predicting
the transition from MCI to AD is driven by a desire to improve
our understanding of the complex interactions between them.
Furthermore, in identifying specific biomarkers important for
predicting the transition to AD, we hope to get insights into
what lifestyle choices affect these biomarkers, possibly leading
a path to effective preventive lifestyle changes.

II. DATA SOURCE

We are working with the dataset collected by Alzheimer’s
Disease Neuroimaging Initiative (ADNI). ADNI was funded
as a private-public partnership by 20 companies and two other
foundations through the Foundation for the National Institutes
of Health and the National Institute on Aging [13]. Phase
1 started in 2004 and lasted five years. Currently, phase 3
is active. ADNI has a standard procedure in each phase for
data collection in subjects, for example vital samples and
questionnaires. Patients from age 55 to 90 are being recruited
in the United States and in Canada.

A. Tabular Data

From ADNI, we used the following tabular datasets.

• The “DXSUM PDXCONV ADNIALL” dataset, con-
taining the longitudinal diagnosis data for each subject,
served as our base dataset.

• For sleep, we worked with “NPI”. The Neuropsychiatric
Inventory (NPI) was developed by J.L. Cummings and
is used to assess psychopathology in dementia patients
(Cummings, 1997). It is based on a questionnaire for
the patient’s caregiver and gives information about the
patient’s sleeping behavior. NPI is what we refer to when
mentioning the “sleep” dataset in our study.

• For researching gut bacteria, we used “ADMCGUT-
METABOLITESLONG 12 13 21”, which we refer to as
“gut bacteria” dataset. This file is based on a project to
measure a panel of gut microbial metabolites and contains
104 metabolites.

• The dataset used for CSF (Cerebrospinal fluid) values is
called “UPENNBIOMK MASTER” and will be referred
to as “CSF” dataset. It contains β-Amyloid-42, Tau, and
P-tau biomarkers.

B. Imaging Data

In addition to the tabular data on subjects, we used the
collection “ADNI1:Complete 3Yr 1.5T” from ADNI [14].
This collection includes 2182 MRI scans created with 1.5
Tesla scanners from subjects who have baseline and follow-
up screenings [15]. All MRI scans have gone through several
steps of preprocessing: gradwarp, B1 non-uniformity, N3, and
scaling [14].

III. METHODS

This section describes the methods we applied on the data.

A. Data Preparation

We built a data pipeline to dynamically combine our tabular
data from the different data sources. This pipeline is a crucial
part in our method, as all our models rely on different feature
sets, as described in section III-C. Each time data is needed, for
example to train a model, we called the pipeline function with
the relevant feature set as a parameter. It then extracted the fea-
tures from their dataset and merged them using outer join on
top of our base dataset “DXSUM PDXCONV ADNIALL”.
As merging identifiers, we used the Phase, RID and VIS-
CODE2 keys. It is important to keep in mind that different
preparation and preprocessing steps could lead to differing
results.

B. Preprocessing

Using this previously described dataset, the pipeline contin-
ued by running the preprocessing functions on the extracted
dataset. These functions include steps like setting the correct
data types on columns and mapping the categorical shorthand
ADNI names to more human-readable descriptions. They are
inspired by the work done by Kobivasan et al. [16].

As not all tests and measurements are conducted on each
visit of a patient, there are missing values. In observations
of visits where the diagnosis is missing, we augment it
by first forward- and then backward-filling the diagnosis
per patient. Based on the diagnosis, we engineer our target
variables PREV DIAG GROUP, NEXT DIAG GROUP, and
PATIENT DIAG GROUP providing information about longi-
tudinal changes in the patient’s diagnosis on each observation.
These target variables, having either a value of MCI-MCI or
MCI-AD, are fundamental to our predictions.

As an example, PREV DIAG GROUP is calculated as
the diagnosis at the patient’s previous and current visit.
Thus, a PREV DIAG GROUP of MCI-AD means that a
patient was diagnosed as MCI on his visit 6 months ago
but has now transitioned to AD. NEXT DIAG GROUP and
PATIENT DIAG GROUP are calculated similarly, referring
to the patient’s current and next visit and overall first and last
visit respectively. The target variables and their meaning are
summarized in Table I.

TABLE I
TARGET VARIABLES FOR TABULAR PREDICTIONS

Target Variable Diag. Group Format Predicting whether subject transitions. . .

PREV DIAG GROUP PREV-CURRENT . . . to AD on the current visit
NEXT DIAG GROUP CURRENT-NEXT . . . to AD on the next visit
PATIENT DIAG GROUP FIRST-LAST . . . to AD between first and last visit

At this point, all observations containing missing values
are augmented by first forward- and then backward-filling per
patient, similar to when a diagnosis is missing but limited to
the range where the patient had the same diagnosis. As our
work focuses on MCI-MCI vs MCI-AD classification, we drop
all observations where the target variables are not consistent
with this. This results in a clean dataset of patient visits where
the values of all the selected features are known.
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Before feeding the dataset into our models, some further
preprocessing steps are needed. All categorical features are
one-hot encoded. Assuming that the development of AD and
therefore a change in diagnosis for a patient can best be
predicted by longitudinal changes in our observed features and
not their value on a single visit, we calculate the difference
between visits. This calculation differs depending on the target
variable that we try to predict with a specific model. For
PREV DIAG GROUP and NEXT DIAG GROUP, we take
the difference between the current and the previous visit of a
patient, whereas the first and last visit of a patient is considered
for PATIENT DIAG GROUP. By forward- and backward-
filling missing values we created duplicate data, which renders
a train-test split ineffective, so all duplicate observations are
dropped. In preparation for model training, a train-test split
(80% train / 20% test) is done on the data. Finally, to account
for class imbalance, we perform oversampling on our training
data. ADNI already applied some pre-processing steps to the
3D brain scans as described in section II-B. We further
performed skull stripping, removing the osseous parts of the
head using a tool called SynthStrip developed by Hoopes et
al. [17]. An example of applied skull stripping can be seen in
Fig. 1 and Fig. 2.

Fig. 1. Transversal Layer of an MRI Brain Scan before SynthStrip

Fig. 2. Transversal Layer of an MRI Brain Scan after SynthStrip

C. Feature Selection

The datasets contain many different features. Our aim was
to reduce the number of features to identify which contribute
most to our predictions. We used three different methods to
identify and select these from our datasets on gut bacteria,
CSF, and sleep. Each of these three methods were applied on
our three target variables, leading to 9 feature sets. They are
implemented as follows:

1) Logistic Regression: For our first method, we trained
a separate logistic regression classifier on every feature
for every dataset. Then, we selected the top

√
n features

based on their accuracy in predicting MCI-MCI / MCI-
AD groups, where n refers to the number of features
in said dataset. This formula leaves us with an adequate
number of features for each dataset.

2) Backward Elimination: The second method combined
logistic regression and backward elimination. We first
trained a logistic regression classifier on the whole
dataset and then dropped the feature with the smallest
contribution to the accuracy of the model. We then re-
peated the training, dropping further features on the new,
smaller dataset following the same selection criteria.
This process was stopped when the number of features
reached

√
n.

3) Decision Tree: The third method involved training a
decision tree with a maximum depth of two. Then again
selecting the top

√
n features by their sole accuracy in

the MCI-MCI / MCI-AD classification.
All these methods result in a set of features that are most
relevant in predicting the transition from MCI to AD according
to the feature selection process and criteria. Thus, each list of
best features for the combined dataset consists of 4 sleep, 11
gut bacteria, and 2 CSF features.

D. Model Training on Tabular Data

Using the 9 combinations of feature set and target variable
obtained in our feature selection process, we loaded and pre-
processed the dataset for each of the combinations and trained
four different types of classifiers: logistic regression, decision
tree, k-nearest neighbour (KNN), and multilayer perceptron
(MLP). We also trained these four classifiers on each dataset
(CSF, sleep, gut bacteria) solely using all their features.

These models were used for multiple reasons. First, our
data includes quantitative and categorial variables, therefore
we needed models that can be applied on both types of data.
Second, these four models cover a wide range of data science
methods, and we aim to find out how well these different
methods work and compare them on the same dataset.

Logistic regression is strong for classifying quantitative data
but does not work well with categorial variables. Since the
only dataset (sleep) that contains categorial data also contains
quantitative data, we are still applying this model to all data.
The decision tree is strong for classifying categorial data but
splits quantitative data into categories. This method can there-
fore still be applied to all datasets. For KNN, the datatype does
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not matter, it only determines how close different observations
are to each other. A multilayer perceptron can also be applied
to all datatypes, but results will be difficult to explain, due to
its complex nature.

Hyperparameters for each model were optimized using
gridsearch. For logistic regression the penalty and the regular-
ization strength were optimized. For decision tree the hyper-
parameters maximum depth, minimum samples to split, and
complexity parameter for minimal cost-complexity pruning
were optimized. For KNN number of neighbors, weighting
of distance, and power parameter for Minkowski metric were
optimized. For the multi-layer perceptron, the shape and
number of the hidden layers were optimized.

In summary, we trained these models to predict the
diagnosis group, specifically our three target variables
PREV DIAG GROUP, NEXT DIAG GROUP and
PATIENT DIAG GROUP. The datasets these models
were trained on were compiled using the combinations of
features identified as being most relevant for the prediction
of the specific target variable within our CSF, gut bacteria,
and sleep datasets.

E. Multi Modal Model Training

We trained a multi-modal model to combine the tabular
data selected by the feature selection as described in sec-
tion III-C and 3D brain scans to evaluate whether combining
both can increase the predictive performance of our mod-
els. The reason for our decision to choose the feature set
identified with the decision tree feature selection method and
NEXT DIAG GROUP as target variable, even though this
was not the tabular model with the best results, was the sample
size. This combination gave us the biggest sample size, which
we considered most important for model training. Data in all
four data sources (sleep, gut bacteria, CSF, and MRI scans)
needed to be available for consecutive visits, which was not
given for all subjects. This specific combination gave us 516
observations to work with.

As seen in Fig. 9 in the appendix, the 3D brain scans are
processed by five rounds of 3D convolution, 3D max pooling,
and dropout layers, as commonly done in CNN models for
image classification. The resulting feature volumes are then
reduced to scalar features using a global average pooling
operation. Then the number of features gets further reduced
by a dense layer [18].

The tabular data is also processed by a dense layer before
being combined with the output of the 3D brain scans as seen
in Fig. 3. The combined features are then processed by another
two dense layers with the relu activation function before being
processed by a final dense layer using the softmax activation
function.

F. Model Evaluation

To evaluate our models, we used the measurement precision
(1). This metric tells us how many times a predicted MCI-
AD transition by our model is correct. In practice this makes
sure that a patient is not wrongly diagnosed with AD. To

CNN Dense Network

MRI (3D Scan)

Concat

Dense Network

Changed from MCI to AD?

Tabular data

Fig. 3. Simplified view of the multi-modal classifier with 3D-image and
tabular input

understand the overall quality of the model, we also took the
F1-Score (3) into account. The F1-Score is the harmonic mean
of precision and recall (2). Recall calculates the number of
correctly predicted changes related to all observed changes.

precision =
TP

TP + FP
(1)

textrecall =
TP

TP + FN
(2)

F1 = 2 · precision · recall
precision+ recall

(3)

To assess the plausibility of our results, we compared them
to the results from other papers that also tried to predict
diagnosis change based on tabular and image data [16], [18].

IV. RESULTS AND DISCUSSION

A. Feature Selection

Feature selection generated nine sets of the most impor-
tant features, one for each combination of our three feature
selection methods and three target variables. Among these,
there are no obvious clusters of repeating variables. Each of
those nine combinations have different important features. The
detailed feature selection results can be found in Table VI in
the appendix.
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B. Results on the Single Datasets

In the following section, we focus on answering our research
questions one, two and three. Detailed results can be found in
Table VII and Fig. 7 in the appendix.

1) Research Question 1: Our first research question is
whether gut bacteria can be used as a predictor for AD
status and transition from mild cognitive impairment (MCI)
to AD. The Table II shows which F1-Score and precision was
calculated per model and target group.

TABLE II
FIVE BEST RESULTS FOR GUT BACTERIA

Model Target Group Binary F1-Score Precision

mlp PATIENT DIAG GROUP 0.609 0.629
logistic regression PATIENT DIAG GROUP 0.592 0.627
decision tree PATIENT DIAG GROUP 0.467 0.610
knn PATIENT DIAG GROUP 0.504 0.493
decision tree PREV DIAG GROUP 0.372 0.302

The best two models have been able to predict changes
from the first to last visit with a precision of 62.9% and
62.7%. Therefore, for this target group, data from gut bacteria
can be used to predict a change. But only over the whole
timeframe, from first to last visit. On a visit-by-visit basis, as
seen in the decision tree model, the best result was achieved
with a precision of 30.2%. However, this model and target
group combination cannot be used, since 70% of the doctors’
diagnoses would have been wrong.

2) Research Question 2: Our second research question is
whether p-tau181, t-tau and β-Amyloid measured in cere-
brospinal fluid (CSF) can be used as early predictors of AD.
The Table III shows our results for the best model and target
group combination.

TABLE III
FIVE BEST RESULTS FOR CSF

Model Target Group Binary F1-Score Precision

logistic regression PATIENT DIAG GROUP 0.581 0.720
knn PATIENT DIAG GROUP 0.508 0.615
decision tree PATIENT DIAG GROUP 0.321 0.474
mlp PATIENT DIAG GROUP 0.375 0.444
logistic regression PREV DIAG GROUP 0.393 0.306

Logistic regression and KNN have been able to predict
changes from first to last visit with a precision of 72.0%
and 61.5%. This indicates that these values can be used in
combination with the two models to predict changes. But that’s
only for the overall diagnosis change. The visit-by-visit results
are below 50% and cannot be used as an early predictor.
Therefore, this research question cannot be confirmed.

3) Research Question 3: Our third research question is
whether changes in sleep behavior can be used to predict
changes from MCI to AD. Table IV shows our results for
the best model and target group combination.

Again, the overall diagnosis change has been predicted best.
The model used was a decision tree and has a precision
of 81.8%. Next follows the change from the last to the

TABLE IV
FIVE BEST RESULTS FOR SLEEP

Model Target Group Binary F1-Score Precision

decision tree PATIENT DIAG GROUP 0.818 0.818
mlp PREV DIAG GROUP 0.723 0.708
knn PREV DIAG GROUP 0.651 0.700
mlp NEXT DIAG GROUP 0.333 0.667
mlp PATIENT DIAG GROUP 0.636 0.636

current visit with a precision of 70.8% by MLP. Therefore,
we conclude that changes in sleeping behavior can be used to
predict diagnosis change.

The first two research questions could not be confirmed.
Only predictions on changes from first to last visit had a high
precision, but not on a visit-by-visit basis. Sleep does seem
to generate useful predictions and 8 out of 12 trained models
had a precision of at least 50%.

C. Results on Combined Dataset

To answer our fourth research question whether a combi-
nation of the factors sleep, gut bacteria and CSF can be used
to predict a transition from MCI to AD, we trained models
on these three. Table V shows our results for the best model,
feature selection, and target group combination, with Fig. 4
visualizing them by various metrics. The detailed results can
be found in Table VIII and Fig. 8 in the appendix.

TABLE V
FIVE BEST RESULTS FOR COMBINED DATASET

Model Feature Selection Target Group Precision

knn Decision Tree PATIENT DIAG GROUP 0.656
logistic regression Decision Tree PATIENT DIAG GROUP 0.636
decision tree Decision Tree PATIENT DIAG GROUP 0.635
knn Logistic Regression PATIENT DIAG GROUP 0.619
mlp Decision Tree PATIENT DIAG GROUP 0.611

Fig. 4. Five Best Results for Combined Dataset
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For predictions from first to last visit the best three results
have been achieved by KNN, logistic regression and decision
tree with precisions between 63.5% and 65.6%. It is noticeable
that these top results are all based on feature selection by the
decision tree. The best results for predictions on a visit-by-visit
basis all have a precision below 50% and will therefore not
be further discussed. Within each target group, it’s difficult to
determine why one model was better than the other. First, the
precision is similar for the best models (2.1% difference for the
top three models). Second, the top three results are achieved
by three different models, with the fourth model being 2.4%
behind the third. As noted, it is more important what model
was used for feature selection.

D. Results from the Multi-Modal Model

Fig. 5. Loss while training the Multi-Modal Model.

The multi-modal model was able to effectively integrate the
tabular data and 3D brain scans. The model was trained on 516
observations and started over-fitting after 7 epochs as seen in
Fig. 5. It achieved an accuracy of 77% and an F1-score of
82% with a precision of 72% and a recall of 97%. The model
had no problem identifying AD transitions as evidenced by
the absence of false negatives. However, the model predicted
transitions to AD for 12 patients whose diagnosis remained
MCI, shown by 12 false positives in a total of 23 actual
negatives. This can be observed in Fig. 6. Judging by F1-score,
these results are considerably better than the results from the
tabular model approach with NEXT DIAG GROUP and the
results generated by Kobivasan et al. [16] using only slices
of brain scans, but still a bit lower than those obtained by a
3D-CNN of Payan & Montana [18].

V. CONCLUSION AND FURTHER RESEARCH

Based on our results, we draw the following conclusions
and propose further research.

Fig. 6. Confusion Matrix showing the result of Multi-Modal Model.

A. Research Questions

As mentioned at the beginning, there are studies that
showed that gut bacteria and CSF data can be used to predict
Alzheimer’s disease [6], [3], [7]. We therefore had expected
better results. Perhaps they would have been seen on a longer
timeframe, for example, not on a visit-by-visit basis, but
year by year or two years. Sleep data showed strong results
predicting a change. This should be further examined, for
example for clusters in features.

Further, it was difficult to quantify the quality of the sleep
data, as they are based on answers from caregivers of the
patients. A questionnaire that focuses more on Alzheimer’s
disease could help improve the result.

The target group from the current visit to the next visit is
somewhat unreliable because a doctor recognizes changes only
at the next visit. Therefore, it could be interesting to see, if the
current status (not change) would give any useful predictions.

B. Model on Combined Dataset

Our conclusion regarding the discovery of the overall target
group PATIENT DIAG GROUP getting the best results is that
a change in brain health does not happen within a few months
between visits. Therefore, the timeframe between two visits
is too short to predict changes with a high precision score.
It was difficult to determine why one model performed better
than the others within each target group, due to the complex
nature of the feature selection.

C. Multi Modal Model

The use of a multi-modal model, combining tabular data
with brain images, was effective in predicting the progression
of Alzheimer’s disease, as demonstrated by an F1-score of
0.82. This result was significantly higher than those obtained
using either our tabular model or image-only models.
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Given the high cost of MRI scans, it is important to
evaluate the clinical utility and feasibility of such multi-
modal prediction models in the early diagnosis and treat-
ment of Alzheimer’s disease. Future research should aim to
replicate and expand upon these findings, by visualizing the
decision-making process and potentially incorporating addi-
tional sources of data, more complex models, and a larger
sample size. The decision-making process could be visualized
using Grad-CAM [19]. It is worth noting that our model
consisted of nearly 3 million trainable parameters, but we only
had 516 data points to work with, highlighting the need for a
larger sample size to fully leverage the potential of the model.
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APPENDIX A

The code used to obtain the results in this paper is freely available at the following link: https://gitlab.fhnw.ch/brain-health/
analysis/. The code is open-source and available for use and modification under the MIT License.

APPENDIX B

TABLE VI
RESULTS OF OUR 3 FEATURE SELECTION METHODS

Method Target Variable Dataset Selected Features

1) Logistic Regression NEXT DIAG GROUP gut bacteria UCA, X3 HYDROXYISOVALERIC ACID, ADIPIC ACID, X7 KETOLCA,
HDCA, MUROCA, X2 HYDROXYBUTYRIC ACID, GUDCA, METHYLSUC-
CINIC ACID, L METHIONINE, C19 2 CIS 10 13

sleep NPIK5, NPIK8, NPIK7, NPIK6
csf PTAU, ABETA

PATIENT DIAG GROUP gut bacteria C20 4 CIS 5 8 11 14, C16 1 CIS 9, C20 3 CIS 8 11 14,
X3 INDOLEPROPIONIC ACID, HDCA, L ASPARTIC ACID, C17 1 CIS 10,
NORCA, BETA ALANINE, CITRIC ACID, C22 5 CIS 4 7 10 13 16

sleep NPIK5, NPIK2, NPIK7, NPIK9A
csf TAU, ABETA

PREV DIAG GROUP gut bacteria UCA, TCA, X7 KETOLCA, MUROCA, C11 0, TDCA, GLYCINE, X7 DHCA,
ADIPIC ACID, NORDCA, C20 4 CIS 5 8 11 14

sleep NPIK3, NPIK4, NPIK8, NPIKTOT
csf TAU, PTAU

2) Backward Elimination NEXT DIAG GROUP gut bacteria X12 KETOLCA, X3 METHYL 2 OXOVALERIC ACID, SUBERIC ACID,
DEHYDROLCA, C20 5 CIS 5 8 11 14 17, GLYCOLIC ACID, C1 0,
CITRIC ACID, L METHIONINE, L ASPARTIC ACID, L SERINE

sleep NPIK2, NPIK9C, NPIK9A, NPIK1
csf ABETA, PTAU

PATIENT DIAG GROUP gut bacteria GUDCA, L ALPHA AMINOBUTYRIC ACID, C9 0, GCA, C16 1 CIS 9,
NORCA, C20 2 CIS 11 14, GCDCA, L ASPARTIC ACID, L SERINE,
L ASPARAGINE

sleep NPIK9B, NPIK9C, NPIK9A
csf ABETA, PTAU

PREV DIAG GROUP gut bacteria X3 METHYL 2 OXOVALERIC ACID, HDCA, MUROCA, DCA, ISOC-
ITRIC ACID, C22 5 CIS 7 10 13 16 19, TCA, BETA ALANINE, GLYCINE,
TCDCA, L ASPARAGINE

sleep NPIK9B, NPIK9A
csf TAU, PTAU

3) Decision Tree NEXT DIAG GROUP gut bacteria L SERINE, X 2 METHYLPENTANOIC ACID, SUBERIC ACID,
X3 INDOLEPROPIONIC ACID, UDCA, X3 HYDROXYISOVALERIC ACID,
L ALANINE, INDOLEACETIC ACID, HDCA, GUDCA, NORDCA

sleep NPIK5, NPIK4, NPIK7, NPIK9A
csf ABETA, PTAU

PATIENT DIAG GROUP gut bacteria APOCA, L ASPARTIC ACID, INDOLEACETIC ACID,
X3 HYDROXYBUTYRIC ACID, HDCA, C6 0, GLYCINE, C9 0, C18 0,
L LEUCINE, C20 3 CIS 8 11 14

sleep NPIK9B, NPIK3, NPIK5, NPIK2
csf PTAU, TAU

PREV DIAG GROUP gut bacteria L PROLINE, L ALANINE, LCA, NORDCA, GCA, MUROCA, TCA, GHDCA,
C18 2 CIS 9 12, ISOBUTYRIC ACID, X 2 METHYLPENTANOIC ACID

sleep NPIK9B, NPIK7, NPIK9C, NPIK4
csf ABETA, TAU

9

https://gitlab.fhnw.ch/brain-health/analysis/
https://gitlab.fhnw.ch/brain-health/analysis/


APPENDIX C

TABLE VII
RESULTS OF MODELS TRAINED ON SINGLE DATASETS

Method Dataset Target Variable Accuracy
F1-score
weighted

F1-score
binary Precision Recall

Number of
test samples

Decision tree CSF NEXT DIAG GROUP 0.779 0.796 0.118 0.100 0.143 68
PATIENT DIAG GROUP 0.415 0.393 0.321 0.474 0.243 65
PREV DIAG GROUP 0.551 0.585 0.286 0.222 0.400 89

Gut bacteria NEXT DIAG GROUP 0.563 0.604 0.250 0.190 0.366 206
PATIENT DIAG GROUP 0.544 0.531 0.467 0.610 0.379 125
PREV DIAG GROUP 0.581 0.606 0.372 0.302 0.485 258

Sleep behavior NEXT DIAG GROUP 0.593 0.650 0.294 0.200 0.556 59
PATIENT DIAG GROUP 0.833 0.833 0.818 0.818 0.818 48
PREV DIAG GROUP 0.779 0.787 0.691 0.594 0.826 77

K-nearest neighbors CSF NEXT DIAG GROUP 0.824 0.810 0.000 0.000 0.000 68
PATIENT DIAG GROUP 0.523 0.521 0.508 0.615 0.432 65
PREV DIAG GROUP 0.663 0.649 0.167 0.188 0.150 89

Gut bacteria NEXT DIAG GROUP 0.670 0.670 0.171 0.171 0.171 206
PATIENT DIAG GROUP 0.464 0.463 0.504 0.493 0.515 125
PREV DIAG GROUP 0.694 0.655 0.202 0.303 0.152 258

Sleep behavior NEXT DIAG GROUP 0.797 0.771 0.143 0.200 0.111 59
PATIENT DIAG GROUP 0.542 0.539 0.476 0.500 0.455 48
PREV DIAG GROUP 0.805 0.801 0.651 0.700 0.609 77

Logistic regression CSF NEXT DIAG GROUP 0.574 0.657 0.216 0.133 0.571 68
PATIENT DIAG GROUP 0.600 0.597 0.581 0.720 0.486 65
PREV DIAG GROUP 0.618 0.648 0.393 0.306 0.550 89

Gut bacteria NEXT DIAG GROUP 0.587 0.621 0.234 0.186 0.317 206
PATIENT DIAG GROUP 0.592 0.592 0.592 0.627 0.561 125
PREV DIAG GROUP 0.605 0.619 0.320 0.286 0.364 258

Sleep behavior NEXT DIAG GROUP 0.576 0.633 0.194 0.136 0.333 59
PATIENT DIAG GROUP 0.604 0.601 0.627 0.552 0.727 48
PREV DIAG GROUP 0.636 0.650 0.500 0.424 0.609 77

Multilayer perceptron CSF NEXT DIAG GROUP 0.779 0.786 0.000 0.000 0.000 68
PATIENT DIAG GROUP 0.385 0.383 0.375 0.444 0.324 65
PREV DIAG GROUP 0.640 0.646 0.238 0.227 0.250 89

Gut bacteria NEXT DIAG GROUP 0.743 0.733 0.293 0.324 0.268 206
PATIENT DIAG GROUP 0.600 0.600 0.609 0.629 0.591 125
PREV DIAG GROUP 0.694 0.655 0.202 0.303 0.152 258

Sleep behavior NEXT DIAG GROUP 0.864 0.834 0.333 0.667 0.222 59
PATIENT DIAG GROUP 0.667 0.667 0.636 0.636 0.636 48
PREV DIAG GROUP 0.831 0.832 0.723 0.708 0.739 77
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Fig. 7. Detailed results per dataset
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TABLE VIII
RESULTS OF MODELS TRAINED ON COMBINED DATASETS USING FEATURE SELECTION METHODS

Method
Feature

Selection Method Target Variable Accuracy
F1-score
weighted

F1-score
binary Precision Recall

Number of
test samples

Decision tree Decision Tree NEXT DIAG GROUP 0.671 0.680 0.250 0.232 0.271 237
PATIENT DIAG GROUP 0.577 0.577 0.580 0.635 0.533 137
PREV DIAG GROUP 0.713 0.720 0.411 0.383 0.443 310

Logistic Regression NEXT DIAG GROUP 0.633 0.655 0.256 0.217 0.313 237
PATIENT DIAG GROUP 0.522 0.515 0.441 0.500 0.394 138
PREV DIAG GROUP 0.646 0.659 0.282 0.253 0.318 302

Backward Elimination NEXT DIAG GROUP 0.690 0.697 0.270 0.254 0.288 261
PATIENT DIAG GROUP 0.574 0.574 0.583 0.532 0.646 141
PREV DIAG GROUP 0.741 0.737 0.341 0.356 0.328 313

K-nearest neighbors Decision Tree NEXT DIAG GROUP 0.662 0.654 0.111 0.119 0.104 237
PATIENT DIAG GROUP 0.599 0.599 0.604 0.656 0.560 137
PREV DIAG GROUP 0.713 0.711 0.350 0.358 0.343 310

Logistic Regression NEXT DIAG GROUP 0.717 0.711 0.264 0.279 0.250 237
PATIENT DIAG GROUP 0.630 0.630 0.605 0.619 0.591 138
PREV DIAG GROUP 0.758 0.750 0.397 0.436 0.364 302

Backward Elimination NEXT DIAG GROUP 0.686 0.678 0.163 0.174 0.154 261
PATIENT DIAG GROUP 0.553 0.554 0.540 0.514 0.569 141
PREV DIAG GROUP 0.738 0.745 0.406 0.378 0.438 313

Logistic regression Decision Tree NEXT DIAG GROUP 0.561 0.603 0.297 0.220 0.458 237
PATIENT DIAG GROUP 0.584 0.585 0.596 0.636 0.560 137
PREV DIAG GROUP 0.713 0.720 0.411 0.383 0.443 310

Logistic Regression NEXT DIAG GROUP 0.586 0.620 0.246 0.195 0.333 237
PATIENT DIAG GROUP 0.471 0.471 0.459 0.449 0.470 138
PREV DIAG GROUP 0.702 0.700 0.308 0.313 0.303 302

Backward Elimination NEXT DIAG GROUP 0.563 0.607 0.360 0.254 0.615 261
PATIENT DIAG GROUP 0.518 0.515 0.541 0.482 0.615 141
PREV DIAG GROUP 0.671 0.690 0.335 0.286 0.406 313

Multilayer perceptron Decision Tree NEXT DIAG GROUP 0.675 0.665 0.135 0.146 0.125 237
PATIENT DIAG GROUP 0.569 0.570 0.599 0.611 0.587 137
PREV DIAG GROUP 0.719 0.716 0.356 0.369 0.343 310

Logistic Regression NEXT DIAG GROUP 0.709 0.691 0.169 0.200 0.146 237
PATIENT DIAG GROUP 0.529 0.529 0.511 0.507 0.515 138
PREV DIAG GROUP 0.762 0.760 0.446 0.453 0.439 302

Backward Elimination NEXT DIAG GROUP 0.724 0.713 0.234 0.262 0.212 261
PATIENT DIAG GROUP 0.525 0.525 0.511 0.486 0.538 141
PREV DIAG GROUP 0.732 0.737 0.382 0.361 0.406 313
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Fig. 8. Detailed results for combined dataset
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Fig. 9. Architecture of the multi-modal classifier with 3D-image and tabular input
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